Chlorolab 2+ System: Liquid Phase Oxygen Electrode System

Chlorolab 2+ is an advanced system for the study of respiration and photosynthesis from liquid samples under automated illumination from a white, red or blue LED light source (colour selected at point of purchase). The system automates the acquisition of oxygen evolution/uptake rates over user-defined light intensities to determine the apparent quantum yield.

Features

Liquid-phase oxygen electrode system for advanced photosynthesis & respiration studies

  • PC-operated USB Oxylab+ electrode control unit
  • DW2/2 advanced electrode chamber with 4 optical ports & integral S1 oxygen electrode disc
  • LED1/W white LED light source (up to 2,000 µmol m-2 s-1) with automated control via user-defined PFD light tables
  • Suitable for liquid-phase samples between 0.2ml – 2.5ml (min. 1.5ml if illuminated) with 0% – 100% oxygen concentration
  • 24-bit high-resolution measurement of oxygen signals
  • Integral systems for measurement of pH & other ion-selective electrode (ISE) signals with 16-bit resolution
  • Onboard LCD readings of oxygen, auxiliary & ISE signals
  • 2-channel capability via purchase of additional systems
  • Quantitherm PAR/Temp sensor for light source calibration
  • OxyTrace+ Windows® software for data acquisition, hardware control & data analysis
  • Real time 0V – 4.5V analogue output of oxygen signal.

Technical Specifications

Oxyview 1 electrode control unit

  • Measuring range: Oxygen: 0% – 100%
  • Signal inputs: Oxygen electrode (SMB)
  • Resolution: 10 x 10-6 μmols/ml at 20°C
  • Polarising voltage: Selectable between 0.4V – 0.9V (0.7V recommended default)
  • Gain: Coarse: x1, x2, x5, x10, x20, x50, x100. Fine: 1mV steps
  • Back off: Signal back off in 1mV steps
  • Analogue output: 0V – 5V electorde signal
  • Dimensions (HWD): 90mm x 135mm x 85mm
  • Weight: 320g
  • Power: 95V – 260V universal input mains supply. Output 12V DC 2.5A

DW2/2 electrode chamber

  • Suitability: Liquid-phase photosynthesis/respiration
  • Construction: Black acetal
  • Sample chamber: Precision-bore, borosilicate glass tube
  • Sample volume: 0.2ml – 2.5ml (1.5ml min. for illumination)
  • Plunger: Variable-height, capped central bore
  • Temperature control: Water jacket connected to circulating water bath
  • Optical ports: 4 x optical port with 16mm diameter
  • Dimensions: 105mm x 65mm
  • Weight 400g.

S1 oxygen electrode disc

  • Electrode type: Clark-type polarographic oxygen sensor
  • Electrode output: Typically 1.6µA at 21% O2
  • Residual current: Typically 0.04µA in 0% O2
  • Response time: 10 – 90% typically <5 seconds
  • Oxygen consumption: Typically <0.015µmol/hr-1

LED1 light source

  • Light source: Single LED
  • Control: Via Oxylab+ and OxyTrace+ software
  • Wavelength:
    • LED1/W – 4100K (colour temperature)
    • LED1/R – 627nm peak wavelength
    • LED1/B – 470nm peak wavelength
  • Cooling: Integral automatic cooling fan
  • Intensity: 2,000 µmol m-2 s-1 (greater intensities possible with multiple LED1 units)
  • Dimensions: 64mm (dia.) x 60 mm (h).
  • Weight: 270g.

QRT1 PAR/Temperature sensor

  • Measuring range: 0 μmol m-2 s-1 – 50,000 μmol m-2 s-1 (+/- 5%) in 2 ranges (0 μmol m-2 s-1 – 5,000 μmol m-2 s-1 & 0 – 50,000 μmol m-2 s-1) in 400nm – 700nm band
  • Resolution:
    • 1 µmol m-2 s-1 at 0 µmol m-2 s-1 – 5,000 µmol m-2 s-1
    • 10 μmol m-2 s-1 at 5,001 µmol m-2 s-1 – 50,000 µmol m-2 s-1
  • PAR sensor: Silicon photodiode and optical filter with white acetal diffuser
  • Temperature sensor: RT curve-matched bead thermistor. 0°C – 50°C/32°F – 122°F (0.02°C resolution)
  • Signal display: Hand-held display unit. 16 x 2 LCD display. 0V – 5V analogue output of PAR/temperature values
  • Power requirements: 4 x 1.5V AA (LR6) cells. Typically 100 hours battery life
  • Dimensions:
    • Display: 146mm x 92mm x 32mm. Weight 300g
    • QTP1+: 9.5mm x 107mm. Weight 50g

Scroll to Top

Please fill our short form and one of our team members will contact you back.

Enquiry